University-Industry Relations: Different solutions to common problems

İ.Semih Akçomak
Science and Technology Policy Research Center
Middle East Technical University

November 2015, Eurolics Workshop on University-Industry Interaction, Maastricht
motivation

• STI policy has nicely evolved from science policy to innovation policy
 – A story of about 50-60 years

• There are signs that science and industrial policy are coming back
 – Two trends have greatly affected how we do science and how we produce
 – Technology and globalisation

• Can we talk of a new era of “science-industry” policy rather than science policy and industrial policy
SWR policy has evolved

<table>
<thead>
<tr>
<th>Decade</th>
<th>science</th>
<th>industrial</th>
<th>technology</th>
<th>innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950-59</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1960-69</td>
<td>38</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1970-79</td>
<td>128</td>
<td>36</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>1980-89</td>
<td>107</td>
<td>201</td>
<td>79</td>
<td>11</td>
</tr>
<tr>
<td>1990-99</td>
<td>105</td>
<td>175</td>
<td>145</td>
<td>12</td>
</tr>
<tr>
<td>2000-09</td>
<td>132</td>
<td>153</td>
<td>99</td>
<td>69</td>
</tr>
<tr>
<td>2010-15</td>
<td>113</td>
<td>121</td>
<td>46</td>
<td>111</td>
</tr>
</tbody>
</table>

Articles in SSCI that include STI policy terms in title (absolute numbers)

<table>
<thead>
<tr>
<th>Decade</th>
<th>science</th>
<th>industrial</th>
<th>technology</th>
<th>innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950-59</td>
<td>0.67</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1960-69</td>
<td>0.83</td>
<td>0.15</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>1970-79</td>
<td>0.67</td>
<td>0.19</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>1980-89</td>
<td>0.27</td>
<td>0.51</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>1990-99</td>
<td>0.24</td>
<td>0.40</td>
<td>0.33</td>
<td>0.03</td>
</tr>
<tr>
<td>2000-09</td>
<td>0.29</td>
<td>0.34</td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>2010-15</td>
<td>0.29</td>
<td>0.31</td>
<td>0.12</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Articles in SSCI that include STI policy terms in title (share in total STI policy articles)
STI policy has evolved

• Two observations can be made looking at the evolution of STI policy
 – What is the next catch-all term after innovation?
 • Entrepreneurship?
 – If we cannot name the next catch-all term can we consider an STI policy cycle?
 • Back to science policy?
 • Or a new approach as science-industry policy?
argument

• Assuming that there is an STI policy cycle we posit that “science-industry” policy rather than science policy and industrial policy will be in the spotlight
 – Policy on the link rather than the nodes
approach

• Science and industry are accepted to be two separate bodies in terms organization, workforce and output creation
• Post 1980s both parties are shaped by technology and globalisation
• Today there are problems that are common to science and industry
• Policy should be directed to these common problems
taking stock: science

- Technology and globalization have affected the way we do science
- Problem: immense knowledge
- How to deal with this “immense knowledge” problem to produce new knowledge?
 - Either work more or divide things into pieces
 - Demography
 - Specialization and rise of team-work
 - Rise of interdisciplinarity
taking stock: science

• Demography
 – Researchers are getting old!
 – Similar findings for articles, patents, PhD thesis, great inventions etc.

• Specialization and rise of team-work
 – One way to deal with immense knowledge
 – Huge time cost of immense knowledge
 – Finding: team-size is rising

• Rise of interdisciplinarity
 – Sophisticated knowledge
 – Cross-boundary research
taking stock: science & education

• Technology and globalisation also affects science education
 – Technology substitutes education
 – Technology helps separation of education and research and globalization helps distribute in space
 – Education is slowly being alienated from research
taking stock: industry

• Immense knowledge problem
 – Specialize and outsource

• Sophisticated output
 – Products are getting sophisticated
 – Rise of team-work
 – Rise of between-sector knowledge production

• Technology divides production into smaller pieces; globalization distributes in space
 – Separation of production and knowledge production
similar problems?

<table>
<thead>
<tr>
<th></th>
<th>science</th>
<th>industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>immense knowledge</td>
<td>• Time cost of education</td>
<td>• Knowhow burden</td>
</tr>
<tr>
<td></td>
<td>• Sophisticated knowledge</td>
<td>• Sophisticated products</td>
</tr>
<tr>
<td>who produces knowledge?</td>
<td>• Rise of team work</td>
<td>• Rise of outsourcing and co-production</td>
</tr>
<tr>
<td>disciplines; sectors?</td>
<td>• Rise of interdisciplinary research</td>
<td>• Rise of products that demand inter-sector knowledge</td>
</tr>
<tr>
<td>cost issues</td>
<td>• Transform education (online, distant etc.) to cut education cost</td>
<td>• Rise of fragmented production to deal with cost of production</td>
</tr>
<tr>
<td></td>
<td>• University education and university research is being separated</td>
<td>• Manufacturing and R&D departments are being separated</td>
</tr>
</tbody>
</table>
common solutions?

• Given these common problems are we offering common solutions?

• I see two approaches
 – Offer similar solutions to similar problems
 • Still a science policy and an industrial policy
 – Offer a completely new approach that focuses on the link between university-industry rather than nodes
 • A science-industry policy
common solutions?...Turkish case

• Various policy tools that builds policy for the node (either university or industry)

• Two policy tools that stands
 – Technology development zones
 • Technology parks, incubators etc.
 • Why firms locate in a university?
 – Tax breaks; image; and various other hard tools
 – Networking with the university least important!
 – Logic: firm benefits, university as resource
 – Technology transfer offices
 • Directly supported by TUBITAK
 • Logic: university benefits as science proceed to practical outcomes
common solutions?...Turkish case

• Even the policies that aim university-industry interaction are based on the node not on the link

• Policies that aim the link are rather soft tools
 – Two questions:
 – What about supply of these policies?
 – Do firms in Turkey demand such policies?